Application of the Permutation Entropy over the Heart Rate Variability for the Improvement of Electrocardiogram-based Sleep Breathing Pause Detection
نویسندگان
چکیده
In this paper the permutation entropy (PE) obtained from heart rate variability (HRV) is analyzed in a statistical model. In this model we also integrate other feature extraction techniques, the cepstrum coefficients derived from the same HRV and a set of band powers obtained from the electrocardiogram derived respiratory (EDR) signal. The aim of the model is detecting obstructive sleep apnea (OSA) events. For this purpose, we apply two statistical classification methods: Logistic Regression (LR) and Quadratic Discriminant Analysis (QDA). For testing the models we use seventy ECG recordings from the Physionet database which are divided into equal-size learning and testing sets. Both sets consist of 35 recordings, each containing a single ECG signal. In our experiments we have found that the features extracted from the EDR signal present a sensitivity of 65.6% and specificity of 87.7% (auc = 85) in the LR classifier, and sensitivity of 59.4% and specificity of 90.3% (auc = 83.9) in the QDA classifier. The HRV-based cepstrum coefficients present a sensitivity of 63.8% and specificity of 89.2% (auc = 86) in the LR OPEN ACCESS Entropy 2015, 17 915 classifier, and sensitivity of 67.2% and specificity of 86.8% (auc = 86.9) in the QDA. Subsequent tests show that the contribution of the permutation entropy increases the performance of the classifiers, implying that the complexity of RR interval time series play an important role in the breathing pauses detection. Particularly, when all features are jointly used, the quantification task reaches a sensitivity of 71.9% and specificity of 92.1% (auc = 90.3) for LR. Similarly, for QDA the sensitivity is 75.1% and the specificity is 90.5% (auc = 91.7).
منابع مشابه
Automatic Sleep Apnoea Detection Using Measures of Amplitude and Heart Rate Variability from the Electrocardiogram
A method for the automatic processing of the electrocardiogram (ECG) for the detection of disordered breathing associated with obstructive sleep apnoea is presented. The method provides a minute-by-minute analysis of night-time single lead ECG recordings. An independently validated database of 35 ECG recordings acquired from normal subjects and subjects with obstructive and mixed sleep apnoea, ...
متن کاملHeart Rate Variability Classification using Support Vector Machine and Genetic Algorithm
Background: Electrocardiogram (ECG) is defined as an electrical signal, which represents cardiac activity. Heart rate variability (HRV) as the variation of interval between two consecutive heartbeats represents the balance between the sympathetic and parasympathetic branches of the autonomic nervous system.Objective: In this study, we aimed to evaluate the efficiency of discrete wavelet transfo...
متن کاملAnalysis of Heart Rate Variability During Meditative and Non-Meditative State Using Analysis of Variance
In this paper the main objective is to quantify and compare the instantaneous value of heart rate for normal breathing patterns during Meditation and Non Meditation conditions. This paper involves Analysis of Variance (ANOVA) technique for the analysis of the heart rate variability patterns during the meditative and non meditative states. The analysis is divided into three stages i.e. data acqu...
متن کاملAnalysis of Heart Rate Variability During Meditative and Non-Meditative State Using Analysis of Variance
In this paper the main objective is to quantify and compare the instantaneous value of heart rate for normal breathing patterns during Meditation and Non Meditation conditions. This paper involves Analysis of Variance (ANOVA) technique for the analysis of the heart rate variability patterns during the meditative and non meditative states. The analysis is divided into three stages i.e. data acqu...
متن کاملA New Approach to Detect Congestive Heart Failure Using Symbolic Dynamics Analysis of Electrocardiogram Signal
The aim of this study is to show that the measures derived from Electrocardiogram (ECG) signals many a time perform better than the same measures obtained from heart rate (HR) signals. A comparison was made to investigate how far the nonlinear symbolic dynamics approach helps to characterize the nonlinear properties of ECG signals and HR signals, and thereby discriminate between normal and cong...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Entropy
دوره 17 شماره
صفحات -
تاریخ انتشار 2015